What's New

Smart Textiles Harvest Power from Motion, Sun

We all know about static cling, but how often can you say your clothes harvest renewable energy from physical movement?  Energy-generating textiles have been in the works for a few years, but now researchers at Georgia Institute of Technology have taken the next step, developing a fabric that can simultaneously harvest energy from both sunshine and motion.

Combining two types of electricity generation into one textile paves the way for developing garments that could provide their own source of energy to power devices such as smart phones or global positioning systems.

“This hybrid power textile presents a novel solution to charging devices in the field from something as simple as the wind blowing on a sunny day,” said Zhong Lin Wang, a Regents professor at the Georgia Tech School of Materials Science and Engineering.

The research was reported September 12 in the publication Nature Energy.

To make the fabric, Wang’s team used a commercial textile machine to weave together solar cells constructed from lightweight polymer fibers with fiber-based triboelectric nanogenerators.

Triboelectric nanogenerators use a combination of the triboelectric effect and electrostatic induction to generate small amount of electrical power from mechanical motion such as rotation, sliding or vibration.

Wang envisions that the new fabric, which is 320 micrometers thick woven together with strands of wool, could be integrated into tents, curtains or wearable garments.

“The fabric is highly flexible, breathable, light weight and adaptable to a range of uses,” Wang said.

smart-textile-wrist-band

A piece of fabric woven with special strands of material that harvest electricity from the sun and motion. Photo credit: Georgia Tech

Fiber-based triboelectric nanogenerators capture the energy created when certain materials become electrically charged after they come into moving contact with a different material. For the sunlight-harvesting part of the fabric, Wang’s team used photoanodes made in a wire-shaped fashion that could be woven together with other fibers.

“The backbone of the textile is made of commonly-used polymer materials that are inexpensive to make and environmentally friendly,” Wang said. “The electrodes are also made through a low cost process, which makes it possible to use large-scale manufacturing.” The fabrication process would also allow the energy-generating materials to be combined with other fiber-based functional devices, like sensors.

In one of their experiments, Wang’s team used a fabric about the size of a sheet of office paper and attached it to a rod like a small colorful flag. Rolling down the windows in a car and letting the flag blow in the wind, the researchers were able to generate significant power from a moving car on a cloudy day. The researchers also measured the output from a 4-by-5 centimeter textile piece, which charged up a 2 mF commercial capacitor to 2 volts in one minute under sunlight and movement.

“This test indicated it has a decent capability of working even in a harsh environment,” Wang said.

While the team observed that the electrical output of the fabric did gradually drop to 73.5 percent of its original performance when relative humidity was increased from 10 percent to 90 percent, they found that the fabric’s performance returns to full capacity if the device is dried out, so there is hope for a washable garment. Xing Fan, an associate professor of chemical engineering at Chongqing University in China and one of the fabric’s inventors, said that encapsulating the textile in an inert material using a common heat-wrapping process should counteract the issue.

While early tests indicate the fabric can withstand repeated and rigorous use, researches will be looking into its long-term durability. Next steps also include further optimizing the fabric for industrial uses, including developing proper encapsulation to protect the electrical components from rain and moisture.

About Tom Breunig (70 Articles)
Tom Breunig is principal at Cleantech Concepts, a market research firm tracking R&D projects in the cleantech sector. He is a technology industry veteran and former international marketing and communications executive who has worked with organizations in semiconductor design, water monitoring, energy efficiency and environmental sensing. He has spoken at numerous technology and energy conferences.
Contact: Twitter

Leave a comment

Your email address will not be published.


*